138. The Radical Ions of Dipleiadiene (Dicyclohepta[*de,ij*]naphthalene) and Its 12b,12c-Homo Derivative. An ESR and ENDOR Study

by Rainer Bachmann, Fabian Gerson*, and Pascal Merstetter

Institut für Physikalische Chemie der Universität Basel, Klingelbergstrasse 80, CH-4056 Basel

and Emanuel Vogel

Institut für Organische Chemie der Universität zu Köln, Greinstrasse 4, D-50949 Köln 41

Dedicated to Edgar Heilbronner on the occasion of his 75th birthday

(24.V.96)

The radical anions and the radical cations of dipleiadiene (dicyclohepta[de,ij]naphthalene; 1) and its 12b,12chomo derivative 2 were characterized by ESR and ENDOR spectroscopy. Their singly occupied orbitals are related to the degenerate nonbonding MOs of a 16-membered π -perimeter. The π -spin distribution over the perimeter is similar in the radical cations 1'⁺ and 2'⁺, and an analogous statement holds for the radical anions 1'⁻ and 2'⁻. However, deviations of the π -system from planarity lead to a decrease in the absolute values of the negative coupling constants of the perimeter protons in 2'⁺ and 2'⁻ relative to those in 1'⁺ and 1'⁻. The hyperfine data for the perimeter protons in the radical ions correlate with the changes in ¹³C chemical shifts on passing from the neutral compounds to the corresponding diions. It is concluded from the coupling constants of the CH₂ protons in the radical ions of 2 that the cation 2'⁺ exists in the methano-bridged form (A) of the neutral 2 (and, presumably, also of the dication 2²⁺), whereas the anion 2'⁻ adopts the bisnorcaradiene form (B) of the dianion 2²⁻.

Introduction. – The synthesis of dipleiadiene (dicyclohepta[de,ij]naphthalene; 1) was reported several years ago [1]. According to the ¹H- and ¹³C-NMR spectra of 1 [1] [2], the 16-membered π -perimeter of this nonalternant hydrocarbon is paratropic, and its π -system can be regarded as an annulene perturbed by the central C=C bond. The 12b,12chomo derivative 2 of 1 was synthesized in the same laboratory [3]. The paratropy of the 16-membered π -perimeter is retained in 2, albeit it is attenuated relative to that in 1 [3], due to deviations of 2 from planarity [4]. Oxidation of 1 in SbF₃/SO₂ClF 1:2 at 195 K yielded the dication 1²⁺ [2], while both dianions 1²⁻ [2] and 2²⁻ [3] were prepared by reduction of the corresponding neutral compounds 1 and 2 with K in THF at ambient temperature. The 16-membered π -perimeter in all three diions becomes diatropic [2] [3], following the removal (1²⁺) or the uptake (1²⁻ and 2²⁻) of two electrons. Moreover, the NMR data for 2²⁻ indicate that the dianion favors the 'closed' bisnorcaradiene form **B** over the 'open', methano-bridged form **A** found for the neutral **2**[3].

Here, we describe the ESR and ENDOR spectra of the radical cations 1^{++} and 2^{++} , and the radical anions 1^{--} and 2^{--} . Either form, A or B, is considered for 2^{++} and 2^{--} .

Results. – Starting from the neutrals 1 and 2, the radical cations 1^{++} and 2^{++} were generated with AlCl₃ or tris(p-bromophenyl)ammoniumyl hexachloroantimonate in CH_2Cl_1 at room temperature, while the corresponding radical anions, 1⁻⁻ and 2⁻⁻, were produced with K in 1,2-dimethoxyethane (DME) at 195 K. In the case of 2⁻⁻, addition of N, N, N', N'', N'' hexamethylphosphoric triamide (HMPT) to DME (1:10) was required to slow down the further reduction to the dianion 2^{2-} . The ESR and ENDOR spectra of the four radical ions, 1⁺⁺, 2⁺⁺, 1⁻⁻, and 2⁻⁻, were taken between 243 and 193 K, in which range they do not markedly depend on the temperature. Figs. 1-4 show these spectra for each of the radical ions. The coupling constants, a_{Hu} , of the three sets of four equivalent perimeter protons in 1^{+} , 2^{+} , 1^{-} , and 2^{-} , as well as those, $a_{\rm H}$ (CH₂), of the pair of protons in the central fragment of 2^{+} and 2^{-} were determined from the positions of the ENDOR signals and certified by simulation of the ESR spectra; they are listed in the Table. Assignments of the $a_{H\mu}$ values to protons at individual C-centers $\mu = 1-12$ are justified in the Discussion¹). General-TRIPLE-resonance experiments carried out on the ENDOR signals [5] indicated that all coupling constants (with the possible exception of that with the smallest absolute value, 0.011 mT, for 2^{-} have the same sign which should be

Fig. 1. Top: ESR spectrum of 1^{+} (solvent CH₂Cl₂, counterion [AlCl₃-CH₂Cl₂]⁻, temp. 198 K). Bottom: ¹H-EN-DOR spectrum of 1^{+} (taken under the same conditions). The numbers above the signals are the absolute values of the coupling constants in mT.

¹) For the sake of comparison, the numbering of the C-atoms in 1 was also used for 2.

Fig. 2. Top: ESR spectrum of 2⁺⁺ (solvent CH₂Cl₂, counterion SbCl₆⁻, temp. 198 K). Bottom: ¹H-ENDOR spectrum of 2⁺⁺ (taken under the same conditions). The numbers above the signals are the absolute values of the coupling constants in mT. 2⁺⁺ is drawn in the methano-bridged form A (see Discussion).

Fig. 3. Top: ESR spectrum of 1^{-} (solvent DME, counterion K⁺, temp. 198 K). Bottom: ¹H-ENDOR spectrum of 1^{-} (taken under the same conditions). The numbers above the signals are the absolute values of the coupling constants in mT.

Fig. 4. Top: ESR spectrum of 2⁻ (solvent DME/HMPT, 10:1, counterion K⁺, temp. 198 K). Bottom: ¹H-ENDOR spectrum of 2⁻ (taken under the same conditions). The numbers above the signals are the absolute values of the coupling constants in mT. 2⁻ is drawn in the bisnorcaradiene form B (see Discussion).

Table. ⁷	H-Coupling	Constants a _{Hu}	and $a_H(CH_2)$	[mT] for the	Radical Ions	1`+, 2`+, 1``	⁻ , and 2 i	and Chanş	ges,
$\Delta \delta^+_{Cu}$ at	nd $\Delta \delta^{-}_{Cu}$, in '	¹³ C Chemical S	Shifts ^a), on Pas	sing from the	Neutrals 1 ar	id $m{2}$ to the $m{L}$	Diions 1 ²⁺ ,	1 ² , and 2	2-22

	μ			
	1, 4, 7, 10	2, 3, 8, 9	5, 6,11, 12	
$\overline{\begin{array}{l}a_{H\mu}(1^{+})\\ \Delta\delta^{+}_{C\mu} = \delta_{C\mu}(1^{2+}) - \delta_{C\mu}(1)\\ a_{H\mu}(2^{+})\end{array}}$	-0.100 +15.6 ^b) -0.055^{c})	-0.231 +24.8 ^b) -0.218 d)	-0.143 +18.4 ^b) -0.080^{c})	
$a_{\rm H}({\rm CH}_2; {\bf 2}^{\cdot+})$,	,	,	-0.096
$\begin{aligned} & \overset{(I,I^{-})}{\Delta\delta_{C\mu}} = \delta_{C\mu}(1^{2-}) - \delta_{C\mu}(1) \\ & a_{H\mu}(2^{*-}) \end{aligned}$	0.253 40.8 0.163	-0.200 -22.7 0.184	-0.043 -10.0 -0.041	
$\begin{aligned} \Delta \dot{\delta}_{C\mu}^{-} &= \delta_{C\mu} (2^{2-}) - \delta_{C\mu} (2) \\ a_{\mathrm{H}} (\mathrm{CH}_{2}; 2^{-}) \end{aligned}$	-26.9	-28.0	-23.9	0.011°)

^a) Experimental error: $\pm 0.001 \text{ mT in } a_{H\mu} \text{ and } \pm 0.1 \text{ in } \delta_{C\mu}$. ^b) Include susceptibility corrections for the $\delta_{C\mu}(\mathbf{1}^{2+})$ values measured with an external reference [2]. ^c) Assignment uncertain. ^d) $\delta_{C\mu}(\mathbf{2}^{2+})$ values not available. ^e) Sign not derived experimentally.

negative according to the theory for the α -protons²) [6]. The g factor for both 1⁺⁺ and 1⁻⁻ is 2.0027, while those of 2⁺⁺ and 2⁻⁻ are 2.0026 and 2.0028, respectively (experimental error: ± 0.0001).

²) In ESR spectroscopy, protons separated by 0,1,2, ... sp³-hybridized C-atoms from the nearest π -center are denoted $\alpha, \beta, \gamma, \dots$ Accordingly, the protons at the centers $\mu = 1-12$ of the 16-membered π -perimeter in 1 and 2 are α , while the CH₂ protons in 2 are β in the methano bridge of the form A but γ in the cyclopropanediylidene fragment of the form **B**.

Discussion. – Dipleiadiene (1). The frontier orbitals, $\psi_{AA}(a_{\mu})$ and $\psi_{SS}(b_{\mu})$, of the essentially planar 1 [1] [2], which are depicted diagrammatically in Fig. 5, can be derived from the nonbonding degenerate MOs of the 16-membered π -perimeter. The subscripts S and A stand for symmetric and antisymmetric with respect to the vertical mirror planes xz and yz, while $a_{\rm u}$ and $b_{\rm lu}$ refer to the irreducible representations in the symmetry group D_{2h} of 1. Whereas in ψ_{AA} the π -perimeter does not interact with the π -system of the central C=C bond, and its nonbonding level is retained ($E_{AA} = \alpha$ in the Hückel model), it does so in ψ_{ss} which becomes antibonding ($E_{ss} = \alpha - 0.29 \beta$; Fig. 5). The HOMO and LUMO of 1 are thus properly described by ψ_{AA} and ψ_{SS} , respectively. The single occupancy of ψ_{AA} in the radical cation 1⁺⁺ implies a uniform π -spin distribution over the 16-membered perimeter with the π -spin population $\rho_{\mu} = 1/16 = 0.0625$ at each center $\mu = 1-12$, a value which is only marginally modified by the McLachlan procedure [7]. Use of McConnell equation for α -protons, $a_{\text{Hu}} = Q \cdot \rho_{\mu}$ [8], with the proportionality factor Q = -2.5 mT yields the average of the coupling constants $a_{H\mu}$, -0.231, -0.143, and -0.100 mT, observed for the three sets of four equivalent perimeter protons in 1^{+} . Assignments of these hyperfine data, $a_{H\mu}$, to the α -protons at the individual perimeter centers μ (Table) are based on comparison with the changes in the ¹³C chemical shifts, $\Delta \delta_{C_{\mu}}^{+} = \delta_{C_{\mu}}(1^{2+}) - \delta_{C_{\mu}}(1)$, on passing from the neutral 1 [1] to the dication 1^{2+} [2]. Such a procedure is justified by the experience that the $\delta_{C\mu}$ values reflect the π -charge populations at the C-centers μ [9] and, therefore, the differences $\Delta \delta_{C\mu}^+$ are roughly proportional to the squared LCAO coefficients, c_{μ}^2 , of the HOMO, as are the α -proton coupling constants, $a_{H\mu}$, for 1⁺⁺, in virtue of the π -spin populations ρ_{μ} [10].

Fig. 5. Frontier orbitals, ψ_{SS} and ψ_{AA} , of 1 as derived from the degenerate nonbonding MOs of the 16-membered π -perimeter

In contrast to the single occupancy of ψ_{AA} in 1⁻⁺, such an occupancy of ψ_{SS} in the radical anion 1⁻⁻ does not presuppose a uniform π -spin distribution over the centers μ of the 16-membered perimeter (*Fig. 5*). Thus, assignments of the coupling constants $a_{H\mu}$, -0.253, -0.200, and -0.043 mT, to the three sets of four α -protons in 1⁻⁻ (*Table*) could be made by correlation with the π -spin populations ρ_{μ} calculated by the *McLachlan* procedure. Moreover, using the arguments presented above for the comparison of the $a_{H\mu}$ values for 1⁻⁺ with the differences $\Delta \delta_{C\mu}^{+}$ for 1 and 1²⁺, one anticipates an analogous

parallelism between the coupling constants $a_{H\mu}$ for 1⁻⁻ and the changes in the ¹³C chemical shifts, $\Delta \delta_{C\mu}^- = \delta_{C\mu}(1^{2-}) - \delta_{C\mu}(1)$, on passing from the neutral 1 [1] to the dianion 1²⁻ [2], because both sets of data should depend on the squared LCAO coefficients, c_{μ}^2 , of the LUMO. Gratifyingly, the assignments indicated by such a relation between the ESR and NMR data agree with those based on the calculated π -spin populations ρ_{μ} .

Homodipleiadiene 2. For the following reasons, interpretation of the 'H-hyperfine data gave more problems for the radical ions 2^{+} and 2^{-} than for 1^{+} and 1^{-} . *i*) As stated in the *Introduction*, the neutral 2 exists in the methano-bridged form A, whereas the dianion 2^{2-} favors the bisnorcaradiene form B, so that both forms must be considered for 2^{+} and 2^{-} . *ii*) The marked deviations from planarity in 2 [4] should carry over to 2^{+} and 2^{-} in either form A or B. *iii*) The dication 2^{2+} has not been prepared.

Irrespective of the form A or B and despite the nonplanarity, the frontier orbitals of 2, $\psi_{AA}(a_2)$ and $\psi_{SS}(a_1)$, can also be traced back to the nonbonding MOs of the 16-membered π -perimeter, in a way analogous to that followed for 1; the notation a_2 and a_1 now refers to the symmetry group $C_{2\nu}$ of 2. Again in ψ_{AA} , the π -perimeter does not interact with appropriate orbitals of the central fragment, which is either $>C-CH_2-C<$ in A or $-C-CH_2-C-$ in **B**, and ψ_{AA} remains essentially nonbonding. In contrast, the energy of ψ_{ss} is raised by such an interaction to an antibonding level. As far as the perimeter is concerned, the HOMO $\psi_{AA}(a_2)$ and the LUMO $\psi_{ss}(a_1)$ of **2** should thus closely resemble the corresponding MOs $\psi_{AA}(a_u)$ and $\psi_{SS}(b_{1u})$ of 1 (Fig. 5). The single occupancy of the relevant frontier orbital in the radical ion means that the π -spin distribution over the centers μ of the perimeter in 2⁺⁺ and 2⁻⁻ should be similar to that in 1⁺⁺ and 1⁻⁻, respectively. The coupling constants, a_{Hw} , of the perimeter α -protons in 2⁺ are, therefore, expected to be comparable to the corresponding values for 1^{+} , and the same statement holds for 2^{-} and 1^{-} . Such an expectation is, in fact, borne out by experimental data (Figs. 1-4 and Table), although some absolute values $|a_{Hu}|$ for 2⁺⁺ and 2⁺⁻ are markedly reduced relative to those for 1⁺⁺ and 1⁻⁺, the sums of $|a_{Hu}|$ for the α -protons at all 12 centers μ of the perimeter being 1.41 (2⁺⁺) vs. 1.90 mT (1⁺⁺) and 1.55 (2⁺⁻) vs. 1.98 mT (1⁺⁻). This decrease is a consequence of deviations of 2^{+} and 2^{-} from planarity, as the coupling constants of the α -protons in nonplanar π -radicals are affected by positive contributions arising from π,σ -spin delocalization which partially compensate the negative ones due to π,σ -spin polarization governing such coupling constants in planar π -radicals [11] [12].

Assignments of the coupling constants $a_{H\mu}$ to the three sets of four equivalent perimeter α -protons in 2⁺⁺ and 2⁻⁻ could thus be guided by analogy with 1⁺⁺ and 1⁻⁻. This procedure is particularly straightforward for those coupling constants which seem least affected by nonplanarity of 2⁺⁺ and 2⁻⁻, namely the one with the distinctly largest $|a_{H\mu}|$ value for the radical cation, -0.218 (2⁺⁺) vs. -0.231 mT (1⁺⁺), and the other with the by far smallest $|a_{H\mu}|$ value for the radical anion, -0.041 (2⁻⁻) vs. -0.043 mT (1⁻⁻). It is, therefore, logical to assign these coupling constants, $a_{H\mu}$, to the α -protons at the same perimeter centers μ in 2⁺⁺ and 2⁻⁻ as in 1⁺⁺ and 1⁻⁻, respectively (*Table*). More problematic are the assignments of the two remaining, less conspicuous $a_{H\mu}$ values to sets of four α -protons in 2⁺⁺ and 2⁻⁻, in view of the larger differences with their counterparts in 1⁺⁺ and 1⁻⁻. For 2⁻⁻, comparison of these values with the changes, $\Delta \delta_{C\mu} = \delta_{C\mu}(2^{2-}) - \delta_{C\mu}(2)$, on passing from the neutral 2 to the dianion 2^{2--} [3], not only confirms the assignment of -0.041 mT, but it also suggests those of the two coupling constants with the larger $|a_{H\mu}|$ values, -0.184and -0.163 mT (*Table*). In the case of 2⁺⁺, an analogous comparison of the coupling constants $a_{H\mu}$ with the changes in the ¹³C chemical shifts, $\Delta \delta_{C\mu}^+ = \delta_{C\mu}(2^{2+}) - \delta_{C\mu}(2)$, is not practicable, because the pertinent NMR data for the dication 2^{2+} are not available. *McLachlan* and AM1 [13] calculations of 2^{+} in both forms A and B clearly support the assignment of -0.218 mT, yet those of the remaining two coupling constants with the smaller $|a_{H\mu}|$ values, -0.080 and -0.055 mT, remain rather uncertain (*Table*).

In contrast to the $a_{H\mu}$ values of the *three sets of four* perimeter α -protons, the coupling constants $a_{H}(CH_2)$ observed for the *single pair* of equivalent protons in the central fragment of 2^{++} and 2^{--} could be directly and unequivocally assigned. Whereas the former hardly provide any information of the actual form **A** or **B**, the latter are highly relevant to such a structural feature. This is because the two CH₂ protons are β in the **A** form but γ in **B**²), and the coupling constants of the β - and γ -protons usually differ by an order of magnitude in their absolute values [6]. Moreover, the sign of the coupling constant of β -protons is generally the same as that of the π -spin population ρ_{μ} at the substitued center μ , while that of the γ -protons with β or γ can thus be achieved by considering the absolute value and the sign of their coupling constant, combined with the use of MO calculations such as the *McLachlan* procedure and AM1.

For 2^{+} , the substantial absolute value and the negative sign of $a_{\rm H}({\rm CH}_2)$ (*Table*) are fully consistent with those expected for the β -protons in the form A, because, with the single occupancy of $\psi_{AA}(a_2)$ in 2^{+} , negative π -spin populations ρ_{μ} of *ca.* -0.03 are predicted at the bridged centers $\mu = 12b$ and 12c in that form¹). The value of -0.096 mT compares favorably with -0.115 mT for the β -protons of the CH₂ bridge in the radical anion of 1,6-methano[10]annulene (3) [11]³). Admittedly, the likewise negative π -spin populations ρ_{μ} at the bridged centers $\mu = 1$ and 6 in 3^{--} are markedly higher than the corresponding ρ_{μ} values for 2^{++} , but hyperconjugation, which is responsible for the coupling to β -protons, is less efficient in radical anions than in radical cations. An alternative form **B** can be excluded for 2^{++} , because, with the single occupancy of $\psi_{AA}(a_2)$, the coupling constant $a_{\rm H}({\rm CH}_2)$ of the γ -protons should be negligibly small.

On the other hand, the small absolute value of $a_{\rm H}(\rm CH_2)$ in 2^{-} (*Table*) is appropriate for the γ -protons in the form **B** with the single occupancy of $\psi_{\rm ss}(a_2)$, whereas, according to calculations, such an occupancy in the form **A** would require an extremely large and positive β -proton coupling constant. The value of 0.011 mT is even smaller than 0.028 mT⁴) for the CH₂ γ -protons in the radical anion of 1,6:8,13-cyclopropanediylidene[14]annulene (4) [12], in which the π -spin populations ρ_{μ} at the centers $\mu = 1$, 6, 8, and 13, proximate to the three-membered ring, are similar in magnitude to those at the corresponding centers $\mu = 4a$, 6a, 10a, and 12a in 2^{-} .

The coupling constants $a_{\rm H}(\rm CH_2)$ thus indicate that the radical cation 2⁻⁺ must exist in the methano-bridged form A of the neutral 2, whereas the radical anion 2⁻⁻ ought to adopt the bisnorcaradiene form B of the dianion 2²⁻. The ease of conversion of 2⁻⁻ to 2²⁻

³) The negative sign of -0.115 mT was derived later on by general-TRIPLE-resonance spectroscopy.

⁴⁾ The sign of 0.011 and 0.028 mT was not determined experimentally.

Helvetica Chimica Acta – Vol. 79 (1996)

upon reduction, particularly in nonpolar solvents, is also consistent with the similar structure of the two species, a finding characteristic of the radical anion and dianion of cyclooctatetraene [14] which are both planar unlike the neutral compound. AM1 Calculations point to a single minimum at the energy hypersurface of both diions 2^{2+} and 2^{2-} . For the latter, such a minimum occurs for the form **B**, in accord with experiment, while, for the former, it is due to the form **A**. Therefore, one concludes that in the redox sequence represented by the dication 2^{2+} , the radical cation 2^{-+} , the neutral 2, the radical anion 2^{--} , and the dianion 2^{2-} , the transition from the methano-bridged form **A** to the bisnorcaradiene form **B** takes place on passing from 2 to 2^{--} .

Experimental. - The syntheses of 1 [1] [2] and 2 [3] are described elsewhere. The ESR spectra were taken on a *Varian-E9* instrument, whereas a *Bruker-ESP-300* system served for the ENDOR and TRIPLE-resonance studies.

This work was supported by the Swiss National Science Foundation.

REFERENCES

- [1] E. Vogel, B. Neumann, W. Klug, H. Schmickler, J. Lex, Angew. Chem. Int. Ed. 1985, 24, 1046.
- [2] J. Werner, Dissertation, Köln, 1988.
- [3] C. Ritz, Dissertation, Köln, 1991.
- [4] R. Arnz, Dissertation, Köln, 1989.
- [5] H. Kurreck, B. Kirste, W. Lubitz, 'Electron Nuclear Double Resonance Spectroscopy of Radicals in Solutions', VCH Publishers, New York, 1989, Chapt. 2.
- [6] F. Gerson, 'High-Resolution ESR Spectroscopy', Wiley and Verlag-Chemie, New York and Weinheim, 1970, Chapt. 1.5.
- [7] A.D. McLachlan, Mol. Phys. 1960, 3, 233.
- [8] H. M. McConnell, J. Chem. Phys. 1956, 24, 632.
- [9] J. W. Emsley, J. Feeney, L. H. Sutcliffe, 'High Resolution NMR Spectroscopy', Pergamon Press, Oxford, 1966, Vol. 2, Chapt. 12.2; D. H. O'Brien, A.J. Hart, C. R. Russell, J. Am. Chem. Soc. 1975, 97, 4410. R. N. Young, Prog. NMR Spectrosc. 1979, 12, 261.
- [10] K. Müllen, Chem. Rev. 1984, 84, 603.
- [11] F. Gerson, E. Heilbronner, W.A. Böll, E. Vogel, Helv. Chim. Acta 1965, 48, 1494; F. Gerson, K. Müllen, E. Vogel, ibid. 1971, 54, 2731.
- [12] F. Gerson, K. Müllen, E. Vogel, J. Am. Chem. Soc. 1972, 94, 2924; F. Gerson, J. Knöbel, J. Lopez, E. Vogel, Helv. Chim. Acta 1985, 68, 371.
- [13] M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 1985, 107, 3902.
- [14] F. Gerson, W. B. Martin, jr., G. Plattner, F. Sondheimer, H. N. C. Wong, Helv. Chim. Acta 1976, 59, 2038.

1634